Identification

Title

Spatial and temporal agreement in climate model simulations of the Interdecadal Pacific Oscillation

Abstract

Accelerated warming and hiatus periods in the long-term rise of Global Mean Surface Temperature (GMST) have, in recent decades, been associated with the Interdecadal Pacific Oscillation (IPO). Critically, decadal climate prediction relies on the skill of state-of-the-art climate models to reliably represent these low-frequency climate variations. We undertake a systematic evaluation of the simulation of the IPO in the suite of Coupled Model Intercomparison Project 5 (CMIP5) models. We track the IPO in pre-industrial (control) and all-forcings (historical) experiments using the IPO tripole index (TPI). The TPI is explicitly aligned with the observed spatial pattern of the IPO, and circumvents assumptions about the nature of global warming. We find that many models underestimate the ratio of decadal-to-total variance in sea surface temperatures (SSTs). However, the basin-wide spatial pattern of positive and negative phases of the IPO are simulated reasonably well, with spatial pattern correlation coefficients between observations and models spanning the range 0.4-0.8. Deficiencies are mainly in the extratropical Pacific. Models that better capture the spatial pattern of the IPO also tend to more realistically simulate the ratio of decadal to total variance. Of the 13% of model centuries that have a fractional bias in the decadal-to-total TPI variance of 0.2 or less, 84% also have a spatial pattern correlation coefficient with the observed pattern exceeding 0.5. This result is highly consistent across both IPO positive and negative phases. This is evidence that the IPO is related to one or more inherent dynamical mechanisms of the climate system.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d71j9cm0

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2017-04-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2017 IOP Publishing Ltd.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:10:05.582993

Metadata language

eng; USA