Identification

Title

Assessing decadal variability of subseasonal forecasts of opportunity using explainable AI

Abstract

Identifying predictable states of the climate system allows for enhanced prediction skill on the generally low-skill subseasonal timescale via forecasts with higher confidence and accuracy, known as forecasts of opportunity. This study takes a neural network approach to explore decadal variability of subseasonal predictability, particularly during forecasts of opportunity. Specifically, this work quantifies subseasonal prediction skill provided by the tropics within the Community Earth System Model Version 2 (CESM2) Large Ensemble and assesses how this skill evolves on decadal timescales. Utilizing the networks’ confidence and explainable artificial intelligence, physically meaningful sources of predictability associated with periods of enhanced skill are identified. Using these networks, we find that tropically-driven subseasonal predictability varies on decadal timescales during forecasts of opportunity. Further, we investigate the drivers of the low frequency modulation of the tropical-extratropical teleconnection and discuss the implications. Analysis is extended to ECMWF Reanalysis v5 data, revealing that the relationships learned within the CESM2-Large Ensemble holds in modern reanalysis data. These results indicate that the neural networks are capable of identifying predictable decadal states of the climate system within CESM2 that are useful for making confident, accurate subseasonal precipitation predictions in the real world.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7pk0mgx

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<style type="text/css"></style><span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:12:09.487609

Metadata language

eng; USA