Identification

Title

Dreary state of precipitation in global models

Abstract

New, definitive measures of precipitation frequency provided by CloudSat are used to assess the realism of global model precipitation. The character of liquid precipitation (defined as a combination of accumulation, frequency, and intensity) over the global oceans is significantly different from the character of liquid precipitation produced by global weather and climate models. Five different models are used in this comparison representing state-of-the-art weather prediction models, state-of-the-art climate models, and the emerging high-resolution global cloud “resolving” models. The differences between observed and modeled precipitation are larger than can be explained by observational retrieval errors or by the inherent sampling differences between observations and models. We show that the time integrated accumulations of precipitation produced by models closely match observations when globally composited. However, these models produce precipitation approximately twice as often as that observed and make rainfall far too lightly. This finding reinforces similar findings from other studies based on surface accumulated rainfall measurements. The implications of this dreary state of model depiction of the real world are discussed.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d72b8zhj

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2010-12-21T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

An edited version of this paper was published by AGU. Copyright 2010 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:49:06.066221

Metadata language

eng; USA