Identification

Title

Long‐term temperature impacts of the Hunga volcanic eruption in the stratosphere and above

Abstract

Global average upper atmosphere temperature changes linked with the Hunga volcanic eruption (January 2022) are analyzed based on satellite measurements and compared with chemistry‐climate model simulations. Results show stratospheric cooling of −0.5 to −1.0 K in the middle and upper stratosphere during 2022 through middle 2023, followed by stronger cooling (−1.0 to −2.0 K) in the mesosphere after middle 2023. The cooling patterns follow the upward propagating water vapor (H 2 O) anomalies from Hunga, and similar behavior is found between observations and model simulations. While the stratospheric cooling is mainly due to radiative cooling from enhanced H 2 O, the mesospheric temperature changes result from ozone losses in the mesosphere, which are in‐turn driven by HO x radicals from Hunga H 2 O. Comparisons with the multi‐decade climate record show that Hunga impacts on stratospheric temperatures have similar magnitude, but opposite sign, to temperature effects from the large El Chichón (1982) and Pinatubo (1991) volcanic eruptions.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7df6wh3

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-11-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<style type="text/css"></style><span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:57:43.298449

Metadata language

eng; USA