Identification

Title

Simulating observations of southern ocean clouds and implications for climate

Abstract

Southern Ocean (S. Ocean) clouds are important for climate prediction. Yet previous global climate models failed to accurately represent cloud phase distributions in this observation-sparse region. In this study, data from the Southern Ocean Clouds, Radiation, Aerosol, Transport Experimental Study (SOCRATES) experiment is compared to constrained simulations from a global climate model (the Community Atmosphere Model, CAM). Nudged versions of CAM are found to reproduce many of the features of detailed in situ observations, such as cloud location, cloud phase, and boundary layer structure. The simulation in CAM6 has improved its representation of S. Ocean clouds with adjustments to the ice nucleation and cloud microphysics schemes that permit more supercooled liquid. Comparisons between modeled and observed hydrometeor size distributions suggest that the modeled hydrometeor size distributions represent the dual peaked shape and form of observed distributions, which is remarkable given the scale difference between model and observations. Comparison to satellite observations of cloud physics is difficult due to model assumptions that do not match retrieval assumptions. Some biases in the model's representation of S. Ocean clouds and aerosols remain, but the detailed cloud physical parameterization provides a basis for process level improvement and direct comparisons to observations. This is crucial because cloud feedbacks and climate sensitivity are sensitive to the representation of S. Ocean clouds.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7z60scb

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-11-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:13:14.895973

Metadata language

eng; USA