Identification

Title

Penetration of dynamo-generated magnetic fields into the Sun's radiative interior

Abstract

Any large-scale magnetic fields present in solar/stellar radiative interiors have so far been thought to be primordial or residuals from extinct dynamos. We show that a regular cyclic dynamo can also be the origin of strong magnetic fields in the solar radiative tachocline and interior below. By exploiting a kinematic, mean-field flux-transport dynamo, we show that for a wide range of core-diffusivity values, from 10⁹ cm² s⁻¹ down to a molecular diffusivity of 10³ cm² s⁻¹, oscillatory dynamo fields penetrate below the tachocline. Amplitudes of these fields are in the range of ~1 kG to 3 × 10³ kG, depending on core diffusivity value, when the dynamo produces ~100 kG peak toroidal fields in the overshoot tachocline. For a low enough core diffusivity (≲10⁸ cm² s⁻¹), there is also a steady (nonreversing) dynamo in the radiative tachocline and below, which generates strong toroidal field of amplitude ~1 kG to 3 × 10³ kG or more there. The key elements in this dynamo are the low diffusivity, the differential rotation near the bottom of the tachocline, and an assumed tachocline α-effect. The Lorentz force feedback may limit oscillatory dynamo fields to ~30 kG, for which the mean nonreversing toroidal fields is still ~300 kG, for the lowest core diffusivity value. The presence of strong oscillatory and steady toroidal fields in the radiative tachocline implies that there cannot be a slow tachocline; the dynamics should always be fast there, dominated by MHD. These results are obtained using solar parameters, but they should also apply generally to stars with convecting shells and perhaps also with convective cores.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d70865gh

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2006-02-10T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Published by the Institute of Physics for the American Astronomical Society. Copyright 2006 The American Astronomical Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T17:06:03.729797

Metadata language

eng; USA