Identification

Title

Revisiting recent U.S. heat waves in a warmer and more humid climate

Abstract

The frequency and intensity of heat waves in the United States is projected to increase in the 21st century. We investigate dry and humid heat waves in a pair of high-resolution model simulations that constrain large-scale atmospheric circulation, to isolate the thermodynamic impacts on characteristics of present and future heat waves over the United States. The two kinds of heat waves show differences in mean intensity, amplitude, duration, and frequency over the Southeast, Northeast, and Midwest, while their characteristics are largely similar in the drier central and western United States. In a warmer climate, relative humidity is projected to decrease during dry heat waves, whereas it remains unchanged during humid heat waves. However, the overall increase in daily maximum temperature intensifies the heat stress during future humid and dry heat waves across all regions. With large-scale circulation constrained, these simulations emphasize the importance of thermodynamic drivers in determining future heat wave characteristics.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7rx9g9h

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-05-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:15:40.827491

Metadata language

eng; USA