Identification

Title

Advancement and demonstration of a perturbative retrieval technique for temperature profiling in the lower troposphere using differential absorption light detection and ranging

Abstract

In response to a community-identified need for ground-based thermodynamic (TD) profiling of the troposphere, we present the further development and validation of a differential absorption LiDAR (DIAL) technique to retrieve temperature. This paper showcases the accuracy of temperature retrievals using a perturbative technique, combining a DIAL measurement of a temperature-sensitive oxygen absorption profile with a high spectral resolution LiDAR measurement of the backscatter ratio profile near 770 nm. This study introduces three key advancements. First, the spectroscopic model used to represent the absorption of light by is enhanced via a more complete physical representation, improving measurement accuracy. Second, the error estimation and masking are developed using the bootstrapping technique. Third, we present a comparison of temperature profiles from our laboratory-based instrument with collocated radiosondes, evaluating the accuracy of our updated measurements. It is essential to clarify that the instrument described in this paper does not operate as a stand-alone TD profiler, as it is not capable of measuring water vapor (WV). Instead, we focus on demonstrating the perturbative retrieval technique with temperature profiles inferred using ancillary radiosonde WV profiles. Results from a full TD profiling instrument will be presented in a future publication. The laboratory-based LiDAR instrument was operated over a 6-month period between April 21, 2022, and September 22, 2022. During this time, we launched 40 radiosondes, providing reference data to validate the accuracy of the DIAL-based temperature profiles. The results indicate that DIAL-based temperature retrievals are within between 0.4 and 3 km (3.5 km) during daytime (nighttime) operation, using a 300-m range resolution and a 60-min time resolution.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7rv0t0h

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-07-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<style type="text/css"></style><span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T20:00:38.749610

Metadata language

eng; USA