Identification

Title

A quantile-conserving ensemble filter framework. Part II: Regression of observation increments in a probit and probability integral transformed space

Abstract

Traditional ensemble Kalman filter data assimilation methods make implicit assumptions of Gaussianity and linearity that are strongly violated by many important Earth system applications. For instance, bounded quantities like the amount of a tracer and sea ice fractional coverage cannot be accurately represented by a Gaussian that is unbounded by definition. Nonlinear relations between observations and model state variables abound. Examples include the relation between a remotely sensed radiance and the column of atmospheric temperatures, or the relation between cloud amount and water vapor quantity. Part I of this paper described a very general data assimilation framework for computing observation increments for non-Gaussian prior distributions and likelihoods. These methods can respect bounds and other non-Gaussian aspects of observed variables. However, these benefits can be lost when observation increments are used to update state variables using the linear regression that is part of standard ensemble Kalman filter algorithms. Here, regression of observation increments is performed in a space where variables are transformed by the probit and probability integral transforms, a specific type of Gaussian anamorphosis. This method can enforce appropriate bounds for all quantities and deal much more effectively with nonlinear relations between observations and state variables. Important enhancements like localization and inflation can be performed in the transformed space. Results are provided for idealized bivariate distributions and for cycling assimilation in a low-order dynamical system. Implications for improved data assimilation across Earth system applications are discussed.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7nv9pbt

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-10-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2023 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:14:07.178158

Metadata language

eng; USA