Identification

Title

Troposphere-stratosphere temperature trends derived from satellite data compared with ensemble simulations from WACCM

Abstract

Decadal-scale trends in tropospheric and stratospheric temperatures derived from satellite measurements over 1979–2014 are compared with ensemble simulations from the Whole Atmosphere Community Climate Model (WACCM). The model is forced with observed sea surface temperatures, changes in greenhouse gases, and ozone-depleting substances, plus solar and volcanic effects, and results from five WACCM realizations (with slightly different initial conditions) are analyzed. We focus on the vertical structure of tropospheric warming and stratospheric cooling increasing with height, the latitudinal and seasonal dependence of trends, and on the temporal evolution of stratospheric temperatures in response to stratospheric ozone depletion and partial recovery. The model captures the observed trend structure in most respects, and the ensemble of simulations provides quantitative estimates of the impact of internal variability on trend estimates. In regions of low variability (e.g., over low latitudes) the ensemble mean trends agree with the observations, while in regions of high variability (e.g., the polar stratosphere) the observations mostly fall within the range of realizations. Temperature response to evolving stratospheric ozone is evaluated by computing separate trends over 1979-1997 (ozone depletion) and 1998-2014 (partial recovery). Robust changes in temperature trends between these periods occur in the global upper stratosphere and in the Antarctic spring lower stratosphere, with consistent behavior between model and observations. Observed lower stratospheric temperatures in the Antarctic show statistically significant warming after 1998, reflecting recently reported healing of the ozone hole.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7r49t9q

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2017-09-25T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2017 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:15:23.996918

Metadata language

eng; USA