Identification

Title

An improved representation of fire non-methane organic gases (NMOGs) in models: emissions to reactivity

Abstract

Fires emit a substantial amount of non-methane organic gases (NMOGs), the atmospheric oxidation of which can contribute to ozone and secondary particulate matter formation. However, the abundance and reactivity of these fire NMOGs are uncertain and historically not well constrained. In this work, we expand the representation of fire NMOGs in a global chemical transport model, GEOS-Chem. We update emission factors to Andreae (2019) and the chemical mechanism to include recent aromatic and ethene and ethyne model improvements (Bates et al., 2021; Kwon et al., 2021). We expand the representation of NMOGs by adding lumped furans to the model (including their fire emission and oxidation chemistry) and by adding fire emissions of nine species already included in the model, prioritized for their reactivity using data from the Fire Influence on Regional to Global Environments (FIREX) laboratory studies. Based on quantified emissions factors, we estimate that our improved representation captures 72 % of emitted, identified NMOG carbon mass and 49 % of OH reactivity from savanna and temperate forest fires, a substantial increase from the standard model (49 % of mass, 28 % of OH reactivity). We evaluate fire NMOGs in our model with observations from the Amazon Tall Tower Observatory (ATTO) in Brazil, Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) and DC3 in the US, and Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) in boreal Canada. We show that NMOGs, including furan, are well simulated in the eastern US with some underestimates in the western US and that adding fire emissions improves our ability to simulate ethene in boreal Canada. We estimate that fires provide 15 % of annual mean simulated surface OH reactivity globally, as well as more than 75 % over fire source regions. Over continental regions about half of this simulated fire reactivity comes from NMOG species. We find that furans and ethene are important globally for reactivity, while phenol is more important at a local level in the boreal regions. This is the first global estimate of the impact of fire on atmospheric reactivity.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d73t9n12

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-09-19T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:36:08.078660

Metadata language

eng; USA