Differential adaptive capacity to extreme heat: A Phoenix, Arizona, case study
Climate change is projected to increase the number of days producing excessive heat across the southwestern United States, increasing population exposure to extreme heat events. Extreme heat is currently the main cause of weather-related mortality in the United States, where the negative health effects of extreme heat are disproportionately distributed among geographic regions and demographic groups. To more effectively identify vulnerability to extreme heat, complementary local-level studies of adaptive capacity within a population are needed to augment census-based demographic data and downscaled weather and climate models. This pilot study, conducted in August 2009 in Phoenix, Arizona, reports responses from 359 households in three U.S. Census block groups identified as heat-vulnerable based on heat distress calls, decedent records, and demographic characteristics. This study sought to understand social vulnerability to extreme heat at the local level as a complex phenomenon with explicit characterization of coping and adaptive capacity among urban residents.
document
http://n2t.net/ark:/85065/d7w37x1h
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2011-10-01T00:00:00Z
Copyright 2011 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:55:14.867529