Identification

Title

Estimation of secondary organic aerosol formation during a photochemical smog episode in Shanghai, China

Abstract

Secondary organic aerosols (SOA) are formed through diverse processes in the atmosphere, among which photochemical processing is one important pathway. SOA formation was studied based on one heavy photochemical smog episode in summer in Shanghai. During the pollution episode, ozone and organic carbon (OC) increased simultaneously with a strong positive correlation, which was complete opposite to the volatile organic compounds (VOCs) pattern but similar to that of VOC photochemical consumption. The OC evolution was explained well by a parameterization method based on the observation of OC and VOCs, and secondary OC (SOC) formation was derived, being comparable with the result based on elemental carbon (EC) tracer method. About 67% of SOC could be explained by the photochemical consumption of VOCs (mainly aromatics, similar to 93%) during the episode. The contribution of VOCs to SOC formation was also estimated from the available VOC emissions inventories, which was comparable with that based on VOCs observations in ambient. Some differences of VOC species contribution to SOC were found between the ambient observation-based and the emission-based results, and the contribution of C9 aromatics was underestimated in the emission inventory. This suggests that bias of speciation might exist in the current VOC emissions inventories. The present study highlights the importance of VOC oxidation for SOC formation in summer in Shanghai. More insights are needed to improve the accuracy of VOCs speciated emissions inventories.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7n58qk3

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-04-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:31:46.507464

Metadata language

eng; USA