Identification

Title

Breaking the cloud-parameterization deadlock

Abstract

A key factor limiting the reliability of simulations of anthropogenic climate change is the inability to accurately represent the various effects of clouds on climate. Despite the best efforts of the community, the problem has resisted solution for several decades. The reasons for this are briefly reviewed and it is argued that it will be many more decades before the problem can be solved through the approaches to cloud parameterization that have been used up to now. An alternative approach, called superparameterization, is then outlined, in which high-resolution cloud system–resolving models (CSRMs) are used in place of the conventional cloud parameterizations. Tests performed with the Community Atmosphere Model show that superparameterizations can give more realistic simulations of the current climate, including greatly improved simulations of the Madden–Julian oscillation and other tropical wave disturbances. Superparameterizations increase the cost of climate simulation by a factor of several hundred dollars, but can make efficient use of massively parallel computers. In addition, superparameterizations make it possible for a climate model to converge to a global CSRM as the horizontal grid spacing of the climate model decreases to a few kilometers. No existing global atmospheric model has this convergence property. Superparameterizations have the potential to greatly increase the reliability of climate change simulations.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d790254j

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2003-11-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2003 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statement, requires written permission or a license form the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or copyright@ametsoc.org.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T17:09:09.245579

Metadata language

eng; USA