Climate response at the Paleocene-Eocene Thermal Maximum to greenhouse gas forcing - A model study with CCSM3
The Paleocene-Eocene Thermal Maximum (PETM; 55 Ma) is of particular interest since it is regarded as a suitable analog to future climate change. In this study, the PETM climate is investigated using the Community Climate System Model (CCSM3) with atmospheric CO₂ concentrations of 4×, 8×, and 16× the preindustrial value. Simulated climate change from 4× to 8× atmospheric CO₂ concentration, possibly corresponding to an environmental precursor of the PETM event, leads to a warming of the North Atlantic Ocean Intermediate-Water masses, thus lowering the critical depth for methane hydrate destabilization by 500 m. A further increase from 8× to 16×CO₂, analogous to a possible massive methane hydrate release, results in global oceanic warming and stratification. The increase in the radiative surface warming, especially at high latitudes, is partially offset by a decrease in the ocean heat transport due to a reduced overturning circulation. Surface temperature values simulated in the 16×CO₂ PETM run represent the closest match to surface temperature reconstructions from proxies for this period. Simulated PETM precipitation, characterized by a slight northward shift of the intertropical convergence zone, increases at higher CO₂ concentrations, especially for the northern midlatitudes as well as the high latitudes in both hemispheres. Data-inferred precipitation values and gradients for North America and Spain, for instance, are in good agreement with the 16×CO₂ simulation. Increasing atmospheric CO₂ concentrations might also have favored the release of terrestrial methane through warmer and wetter conditions over land, thus reinforcing the greenhouse gas concentration increase.
document
https://n2t.org/ark:/85065/d7gt5pd9
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2010-05-01T00:00:00Z
Copyright 2010 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-17T15:26:18.155547