Identification

Title

Effects of mesoscale surface thermal heterogeneity on low-level horizontal wind speeds

Abstract

Using large-eddy simulation, we investigate characteristics of horizontal wind speed at 100 m above the ground, with surface heat-flux variations that are sinusoidal with amplitudes of 0, 50, and 200W m⁻² and wavelengths of 16, 32, and 128 km, and no background flow. When the amplitude is 200W m⁻², wind speeds induced by the surface-flux variations on scales of 16 and/or 32 km have multiple temporal oscillations from 0600 to 1800 local standard time. The positive peaks first appear before noon. In contrast, for wind speeds induced by the 128-km surface heterogeneity, a single oscillation occurs in the late afternoon, which is much larger than those generated by the 16- and 32-km surface heterogeneity. In addition, at the oscillation onset the kurtosis of the velocity increment over a distance of 1 km significantly increases, which implies intermittency in the generation of 1-km scale eddies. The spatially intermittent energy cascade generated by surface heterogeneity scaled down to 1-km eddies is analogous to the well-known intermittent energy cascade in the inertial subrange. The kurtosis of the 1-km eddies is much larger with the 128-km surface heterogeneity than with the 16- and 32-km heterogeneities. Thus we conclude that localized rapid changes of low-level horizontal wind speed may be caused by significant local surface heterogeneity on scales between a few tens and a few hundreds of kilometres.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d76m37f2

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2012-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2012, Springer Science+Business Media B.V.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-15T21:38:19.328504

Metadata language

eng; USA