Identification

Title

Roles of barotropic instability across the moat in inner eyewall decay and outer eyewall intensification: Three-dimensional numerical experiments

Abstract

Radar imagery of some double-eyewall tropical cyclones shows that the inner eyewalls became elliptical prior to their dissipation during the eyewall replacement cycles, indicating that the barotropic instability (BI) across the moat (also known as type-2 BI) may play a role. To further examine the physics of inner eyewall decay and outer eyewall intensification under the influence of the type-2 instability, three-dimensional numerical experiments are performed. In the moist full-physics run, the simulated vortex exhibits the type-2 instability and the associated azimuthal wavenumber-2 radial flow pattern. The absolute angular momentum (AAM) budget calculation indicates, after the excitation of the type-2 instability, a significant intensification in the negative radial advection of AAM at the inner eyewall. It is further shown that the changes in radial AAM advection largely result from the eddy processes associated with the type-2 instability and contribute significantly to the inner eyewall decay. The budget calculation also suggests that the type-2 instability can accelerate the inner eyewall decay in concert with the boundary layer cutoff effect. Another dry no-physics idealized experiment is conducted and the result shows that the type-2 instability alone is able to weaken the inner eyewall and also strengthen the outer eyewall with nonnegligible effect.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7rr22kr

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-02-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2021 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:28:31.915395

Metadata language

eng; USA