Identification

Title

The tornado probability algorithm: A probabilistic machine learning tornadic circulation detection algorithm

Abstract

A new probabilistic tornado detection algorithm was developed to potentially replace the operational tornado detection algorithm (TDA) for the WSR-88D radar network. The tornado probability algorithm (TORP) uses a random forest machine learning technique to estimate a probability of tornado occurrence based on single-radar data, and is trained on 166 145 data points derived from 0.58-tilt radar data and storm reports from 2011 to 2016, of which 10.4% are tornadic. A variety of performance evaluation metrics show a generally good model performance for discriminating between tornadic and nontornadic points. When using a 50% probability threshold to decide whether the model is predicting a tornado or not, the probability of detection and false alarm ratio are 57% and 50%, respectively, showing high skill by several metrics and vastly outperforming the TDA. The model weaknesses include false alarms associated with poor-quality radial velocity data and greatly reduced performance when used in the western United States. Overall, TORP can provide real-time guidance for tornado warning decisions, which can increase forecaster confidence and encourage swift decision-making. It has the ability to condense a multitude of radar data into a concise object-based information readout that can be displayed in visualization software used by the National Weather Service, core partners, and researchers.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7k93chx

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-03-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2023 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:28:18.912932

Metadata language

eng; USA