The tornado probability algorithm: A probabilistic machine learning tornadic circulation detection algorithm
A new probabilistic tornado detection algorithm was developed to potentially replace the operational tornado detection algorithm (TDA) for the WSR-88D radar network. The tornado probability algorithm (TORP) uses a random forest machine learning technique to estimate a probability of tornado occurrence based on single-radar data, and is trained on 166 145 data points derived from 0.58-tilt radar data and storm reports from 2011 to 2016, of which 10.4% are tornadic. A variety of performance evaluation metrics show a generally good model performance for discriminating between tornadic and nontornadic points. When using a 50% probability threshold to decide whether the model is predicting a tornado or not, the probability of detection and false alarm ratio are 57% and 50%, respectively, showing high skill by several metrics and vastly outperforming the TDA. The model weaknesses include false alarms associated with poor-quality radial velocity data and greatly reduced performance when used in the western United States. Overall, TORP can provide real-time guidance for tornado warning decisions, which can increase forecaster confidence and encourage swift decision-making. It has the ability to condense a multitude of radar data into a concise object-based information readout that can be displayed in visualization software used by the National Weather Service, core partners, and researchers.
document
http://n2t.net/ark:/85065/d7k93chx
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2023-03-01T00:00:00Z
Copyright 2023 American Meteorological Society (AMS).
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:28:18.912932