Identification

Title

Quantifying the potential predictability of Arctic marine primary production

Abstract

Phytoplankton in the Arctic Ocean and sub‐Arctic seas support a rich marine food web that sustains Indigenous communities as well as some of the world's largest fisheries. As sea ice retreat leads to further expansion of these fisheries, there is growing need for predictions of phytoplankton net primary production (NPP), which will likely allow better management of food resources in the region. Here, we use perfect model simulations of the Community Earth System Model version 2 (CESM2) to quantify short‐term (month to 2 years) predictability of Arctic Ocean NPP. Our results indicate that NPP is potentially predictable during the most productive summer months for at least 2 years, largely due to the highly predictable Arctic shelves where fisheries in the Arctic are projected to expand. Sea surface temperatures, which are an important limitation on phytoplankton growth and also are predictable for multiple years, are the most important physical driver of this predictability. Finally, we find that the predictability of NPP in the 2030s is enhanced relative to the 2010s, indicating that the utility of these predictions may increase in the near future. This work indicates that operational forecasts using Earth system models may provide moderately skillful predictions of NPP in the Arctic, possibly aiding in the management of Arctic marine resources.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7tb1cbf

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2025-04-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;font-weight:normal;" data-sheets-root="1">Copyright 2025 American Geophysical Union (AGU).</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:47:40.587065

Metadata language

eng; USA