Simulated frequency dependence of radar observations of tornadoes
To obtain accurate radar-measured wind measurements in tornadoes, differences between air and Doppler velocities must be corrected. These differences can cause large errors in radar estimates of maximum tangential wind speeds, and large errors in single-Doppler retrievals of radial and vertical velocities. Since larger scatterers (e.g., debris) exhibit larger differences from air velocities compared to small scatterers (e.g., raindrops), the dominant scatterer type affecting radar measurements is examined. In this study, radar variables are simulated for common weather radar frequencies using debris and raindrop trajectories computed with a large-eddy simulation model and two electromagnetic scattering models. These simulations include a large range of raindrop and wood board sizes and concentrations, and reveal the significant frequency dependence of the equivalent reflectivity factor and Doppler velocity. At S band, dominant scatterers are wood boards, except when wood board concentrations are very low. In contrast, raindrops are the dominant scatterers at Ka and W bands even when large concentrations of wood boards are present, except for low raindrop concentrations. Dual-wavelength velocity differences exhibit high correlation with air and Doppler velocity differences for most cases, which may enable direct measurements of scatterer-induced Doppler velocity bias in tornadoes. Moreover, dual-wavelength ratios are shown to exhibit strong correlations with dominant scatterer size, except when Rayleigh scatterers are dominant. Finally, vertical velocity retrievals are shown to exhibit lower errors at high frequencies, and large errors remain at centimeter wavelengths even after debris centrifuging corrections are applied in cases with high debris concentration.
document
http://n2t.net/ark:/85065/d7qz2cn4
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2016-09-01T00:00:00Z
Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:23:00.055905