Identification

Title

Dynamics of rotor formation in uniformly stratified two-dimensional flow over a mountain

Abstract

The coupling between mountain waves in the free atmosphere and rotors in the boundary layer is investigated using a two-dimensional numerical model and linear wave theory. Uniformly stratified flow past a single mountain is examined. Depending on background stratification and mountain width, different wave regimes are simulated, from weakly to strongly nonlinear and from hydrostatic to non-hydrostatic. Acting in conjunction with surface friction, mountain waves cause the boundary layer to separate from the ground, causing the development of atmospheric rotors in the majority of the simulated flows. The rotors with largest vertical extent and strongest reverse flow near the ground are found to develop when the wave field is nonlinear and moderately non-hydrostatic, in line with linear theory predictions showing that the largest wave amplitudes develop in such conditions. In contrast, in near-hydrostatic flows boundary-layer rotors form even if the wave amplitude predicted by linear theory is relatively small. In such cases, rotors appear to be decoupled from the wave field aloft by low-level wave breaking. In fact, rotor formation is caused by short-wavelength modes propagating horizontally along an elevated and stably stratified jet below the neutrally stratified wave-breaking region. Once formed, atmospheric rotors trigger non-hydrostatic wave modes that can penetrate through the finite-depth neutral layer above the jet and propagate into the free atmosphere. In all simulated cases, non-hydrostatic effects—i.e. sharp vertical accelerations—appear to be essential for rotor formation, regardless of the degree of hydrostaticity in the primary wave field.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d75m67bj

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2016-03-17T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2016 Authors.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:21:16.053789

Metadata language

eng; USA