Design and sampling characteristics of a new airborne aerosol inlet for aerosol measurements in clouds
Design of a new submicron aerosol inlet (SMAI) for airborne sampling of aerosol particles is introduced and its performance characteristics under a range of sampling conditions are presented. Analysis of inlet performance in clear-air and cloud systems shows that submicron aerosols are sampled representatively by the inlet, and in comparison with other types of inlets the SMAI has a relatively minor or nonexistent problem of droplet shatter contamination. The SMAI has a flow-through cone, with a perpendicular subsampling tube inside it. The cone acts as a virtual blunt body and decelerates the velocity directed toward a subsampling tube within the cone, resulting in reduced droplet impaction velocities and negligible artifact particle generation. The use of a perpendicular subsampling tube helps eliminate large shattered droplets from entering the sample volume, though it also results in lowering the aerosol sampling cut size. The SMAI sampling characteristics are determined from computational fluid dynamics simulations, and its cut size is calculated to be ∼3 μm. In warm clouds, the shatter artifacts in the SMAI measurements are significantly less than that in a diffuser-type inlet, and shatter artifacts are only observed to increase when concentrations of drops larger than ∼100 μm increase. In cold-cloud systems, shatter artifacts are significantly reduced with SMAI and some dependence of the inlet’s performance on the shape of the ice particles is observed.
document
http://n2t.net/ark:/85065/d7kp833x
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2013-06-01T00:00:00Z
Copyright 2013 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:21:54.855358