Identification

Title

Tracking movement of long-lived equatorial coronal holes from analysis of long-term McIntosh Archive Data

Abstract

Features at the Sun's surface and atmosphere are constantly changing due to its magnetic field. The McIntosh Archive provides a long-term (45 yr) record of these features, digitized from hand-drawn synoptic maps by Patrick McIntosh. Utilizing this data, we create stack plots for coronal holes, i.e., Hovmoller-type plots of latitude bands, for all longitudes, stacked in time, allowing tracking of coronal hole movement. Using a newly developed two-step method of centroid calculation, which includes a Fourier descriptor to represent a coronal hole's boundary and calculate the centroid by the use of Green's theorem, we calculate the centroids of 31 unique, long-lived equatorial coronal holes for successive Carrington rotations during the entire solar cycle 23, and estimate their slopes (time versus longitude) as the coronal holes evolve. We compute coronal hole centroid drift speeds from these slopes, and find an eastward (prograde) pattern that is actually retrograde with respect to the local differential rotation. By discussing the plausible physical mechanisms which could cause these long-lived equatorial coronal holes to drift retrograde, we identify either classical or magnetically modified westward-propagating solar Rossby waves, with a speed of a few tens to a few hundreds of meters per second, to be the best candidate for governing the drift of deep-rooted, long-lived equatorial coronal holes. To explore plausible physics of why long-lived equatorial coronal holes appear few in number during solar minimum/early rising phase more statistics are required, which will be studied in future.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7xg9vwr

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-05-20T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:36:41.487093

Metadata language

eng; USA