Event-based climatology and typology of fog in the New York City region
The character of fog in a region centered on New York City, New York, is investigated using 20 yr of historical data. Hourly surface observations are used to identify fog events at 17 locations under the influence of various physiographic features, such as land–water contrasts, land surface character (urban, suburban, and rural), and terrain. Fog events at each location are classified by fog types using an objective algorithm derived after extensive examination of fog formation processes. Events are characterized according to frequency, duration, and intensity. A quantitative assessment of the likelihood with which mechanisms leading to fog formation are occurring in various parts of the region is obtained. The spatial, seasonal, and diurnal variability of fog occurrences are examined and results are related to regional and local influences. The results show that the likelihood of fog occurrence is influenced negatively by the presence of the urban heat island of New York City, whereas it is enhanced at locations under the direct influence of the marine environment. Inland suburban and rural locations also experience a considerable amount of fog. As in other areas throughout the world, the overall fog phenomenon is a superposition of various types. Precipitation fog, which occurs predominantly in winter, is the most common type. Fog resulting from cloud-base lowering also occurs frequently across the region, with an enhanced likelihood in winter and spring. A considerable number of advection fog events occur in coastal areas, mostly during spring, whereas radiation fog occurs predominantly at suburban and rural locations during late summer and early autumn but also occurs during the warm season in the coastal plain of New Jersey as advection-radiation events
document
https://n2t.org/ark:/85065/d7tx3fk1
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2007-08-01T00:00:00Z
Copyright 2007 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-17T17:01:02.412661