Identification

Title

Identifying ocean submesoscale activity from vertical density profiles using machine learning

Abstract

Submesoscale eddies are important features in the upper ocean where they mediate air‐sea exchanges, convey heat and tracer fluxes into ocean interior, and enhance biological production. However, due to their small size (0.1–10 km) and short lifetime (hours to days), directly observing submesoscales in the field generally requires targeted high resolution surveys. Submesoscales increase the vertical density stratification of the upper ocean and qualitatively modify the vertical density profile. In this paper, we propose an unsupervised machine learning algorithm to identify submesoscale activity using vertical density profiles. The algorithm, based on the profile classification model (PCM) approach, is trained and tested on two model‐based data sets with vastly different resolutions. One data set is extracted from a large‐eddy simulation (LES) in a 4 km by 4 km domain and the other from a regional model for a sector in the Southern Ocean. We show that the adapted PCM can identify regions with high submesoscale activity, as characterized by the vorticity field (i.e., where surface vertical vorticity is similar to Coriolis frequency and Rossby number ), using solely the vertical density profiles, without any additional information on the velocity, the profile location, or horizontal density gradients. The results of this paper show that the adapted PCM can be applied to data sets from different sources and provides a method to study submesoscale eddies using global data sets (e.g., CTD profiles collected from ships, gliders, and Argo floats).

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7r78kk2

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2025-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:55:21.243147

Metadata language

eng; USA