Identification

Title

A comparative study of various approaches for producing probabilistic forecasts of upper-level aviation turbulence

Abstract

The skill of operational deterministic turbulence forecasts is impacted by the uncertainties in both weather forecasts from the underlying numerical weather prediction (NWP) models and diagnoses of turbulence from the NWP model output. This study compares various probabilistic turbulence forecasting approaches to quantify these uncertainties and provides recommendations on the most suitable approach for operational implementation. The approaches considered are all based on ensembles of NWP forecasts and/or turbulence diagnostics, and include a multi-diagnostic ensemble (MDE), a time-lagged NWP ensemble (TLE), a forecast-model NWP ensemble (FME), and combined time-lagged MDE (TMDE) and forecast-model MDE (FMDE). Both case studies and statistical analyses are provided. The case studies show that the MDE approach that represents the uncertainty in turbulence diagnostics provides a larger ensemble spread than the TLE and FME approaches that represent the uncertainty in NWP forecasts. The larger spreads of MDE, TMDE, and FMDE allow for higher probabilities of detection for low percentage thresholds at the cost of increased false alarms. The small spreads of TLE and FME result in either hits with higher confidence or missed events, highly dependent on the performance of the underlying NWP model. Statistical evaluations reveal that increasing the number of diagnostics in MDE is a cost-effective and powerful method for describing the uncertainty of turbulence forecasts, considering trade-offs between accuracy and computational cost associated with using NWP ensembles. Combining either time-lagged or forecast-model NWP ensembles with MDE can further improve prediction skill and could be considered if sufficient computational resources are available.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7k64p08

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2023 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:55:56.319417

Metadata language

eng; USA