Identification

Title

Medium-range convection-allowing ensemble forecasts with a variable-resolution global model

Abstract

Two sets of global, 132-h (5.5-day), 10-member ensemble forecasts were produced with the Model for Prediction Across Scales (MPAS) for 35 cases in April and May 2017. One MPAS ensemble had a quasi-uniform 15-km mesh while the other employed a variable-resolution mesh with 3-km cell spacing over the conterminous United States (CONUS) that smoothly relaxed to 15 km over the rest of the globe. Precipitation forecasts from both MPAS ensembles were objectively verified over the central and eastern CONUS to assess the potential benefits of configuring MPAS with a 3-km mesh refinement region for medium-range forecasts. In addition, forecasts from NCEP's operational Global Ensemble Forecast System were evaluated and served as a baseline against which to compare the experimental MPAS ensembles. The 3-km MPAS ensemble most faithfully reproduced the observed diurnal cycle of precipitation throughout the 132-h forecasts and had superior precipitation skill and reliability over the first 48 h. However, after 48 h, the three ensembles had more similar spread, reliability, and skill, and differences between probabilistic precipitation forecasts derived from the 3- and 15-km MPAS ensembles were typically statistically insignificant. Nonetheless, despite fewer benefits of increased resolution for spatial placement after 48 h, 3-km ensemble members explicitly provided potentially valuable guidance regarding convective mode throughout the 132-h forecasts while the other ensembles did not. Collectively, these results suggest both strengths and limitations of medium-range high-resolution ensemble forecasts and reveal pathways for future investigations to improve understanding of high-resolution global ensembles with variable-resolution meshes.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7br8sjj

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-08-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 American Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:26:34.130894

Metadata language

eng; USA