Identification

Title

An Eulerian scheme for identifying fronts and vortices in quasi-balanced flows

Abstract

The identification of vortices in a fluid flow is a dynamically interesting problem that has practical applications in oceanography due to the outsized role eddies play in water mass, heat, and tracer transport. Here a new Eulerian scheme is developed to detect both vortices and strongly strained fronts, which are both ubiquitous in the World Ocean. The new scheme is conceptually linked to the well-known Okubo-Weiss parameter, but is extended to quasigeostrophic flows by recognizing the strong role played by vertical shear in ocean dynamics. Adapted from the lambda(2) criterion for vortex identification, the scheme considers the curvature of the pressure field as the differentiator between vortical and strained flow structures, and it is shown that its underlying geometry also exhibits characteristics of quasigeostrophic flow. The uses and skill of the scheme are demonstrated using a high-resolution regional ocean simulation, and prospects for its use with observational products are discussed.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7rr22sf

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-10-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2021 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:34:17.293194

Metadata language

eng; USA