An impact assessment of GPS radio occultation data on prediction of a rapidly developing cyclone over the southern ocean
The impact of global positioning system (GPS) radio occultation (RO) data on an intense synoptic-scale storm that occurred over the Southern Ocean in December 2007 is evaluated, and a synoptic explanation of the assessed impact is offered. The impact is assessed by using the three-dimensional variational data assimilation scheme (3DVAR) of the Weather Research and Forecasting (WRF) Model Data Assimilation system (WRFDA), and by comparing two experiments: one with and the other without assimilating the refractivity data from four different RO missions. Verifications indicate significant positive impacts of the RO data in various measures and parameters as well as in the track and intensity of the Antarctic cyclone. The analysis of the atmospheric processes underlying the impact shows that the assimilation of the RO data yields substantial improvements in the large-scale circulations that in turn control the development of the Antarctic storm. For instance, the RO data enhanced the strength of a 500-hPa trough over the Southern Ocean and prevented the katabatic flow near the coast of East Antarctica from an overintensification. This greatly influenced two low pressure systems of a comparable intensity, which later merged together and evolved into the major storm. The dominance of one low over the other in the merger dramatically changed the track, intensity, and structure of the merged storm. The assimilation of GPS RO data swapped the dominant low, leading to a remarkable improvement in the subsequent storm's prediction.
document
https://n2t.org/ark:/85065/d7f47q4p
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2014-11-01T00:00:00Z
Copyright 2014 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-12T00:04:44.592553