Scale space multiresolution analysis of random signals
A method to capture the scale-dependent features in a random signal is proposed with the main focus on images and spatial fields defined on a regular grid. A technique based on scale space smoothing is used. However, while the usual scale space analysis approach is to suppress detail by increasing smoothing progressively, the proposed method instead considers differences of smooths at neighboring scales. A random signal can then be represented as a sum of such differences, a kind of a multiresolution analysis, each difference representing details relevant at a particular scale or resolution. Bayesian analysis is used to infer which details are credible and which are just artifacts of random variation. The applicability of the method is demonstrated using noisy digital images as well as global temperature change fields produced by numerical climate prediction models.
document
https://n2t.org/ark:/85065/d7f1918x
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2011-10-01T00:00:00Z
An edited version of this article was published by Elsevier. Copyright 2011 Elsevier.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-17T14:25:41.325096