Detecting long-term trends in precipitable water over the Tibetan Plateau by synthesis of station and MODIS observations
Long-term trends in precipitable water (PW) are an important component of climate change assessments for the Tibetan Plateau (TP). PW products from Moderate Resolution Imaging Spectroradiometer (MODIS) are able to provide good spatial coverage of PW over the TP but limited in time coverage, while the meteorological stations in the TP can estimate long-term PW but unevenly distributed. To detect the decadal trend in PW over the TP, Bayesian inference theory is used to construct long-term and spatially continuous PW data for the TP based on the station and MODIS observations. The prior information on the monthly-mean PW from MODIS and the 63 stations over the TP for 2000-06 is used to get the posterior probability knowledge that is utilized to build a Bayesian estimation model. This model is then operated to estimate continuous monthly-mean PW for 1970-2011 and its performance is evaluated using the monthly MODIS PW anomalies (2007-11) and annual GPS PW anomalies (1995-2011), with RMSEs below 0.65 mm, to demonstrate that the model estimation can reproduce the PW variability over the TP in both space and time. Annual PW series show a significant increasing trend of 0.19 mm decade⁻¹ for the TP during the 42 years. The most significant PW increase of 0.47 mm decade⁻¹ occurs for 1986–99 and an insignificant decrease occurs for 2000–11. From the comparison of the PW data from JRA-55, ERA-40, ERA-Interim, MERRA, NCEP-2, and ISCCP, it is found that none of them are able to show the actual long-term trends and variability in PW for the TP as the Bayesian estimation.
document
https://n2t.org/ark:/85065/d7rr20dp
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2015-02-01T00:00:00Z
Copyright 2015 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-12T00:02:32.396739