An upwind-biased transport scheme using a quadratic reconstruction on spherical icosahedral grids
Several transport schemes developed for spherical icosahedral grids are based on the piecewise linear approximation. The simplest one among them uses an algorithm where the tracer distribution in the upwind side of a cell face is reconstructed using a linear surface. Recently, it was demonstrated that using second- or fourth-order reconstructions instead of the linear one produces better results. The computational cost of the second-order reconstruction method was not much larger than the linear one, while that of the fourth-order one was significantly larger. In this work, the authors propose another second-order reconstruction scheme on the spherical icosahedral grids, motivated by some ideas from the piecewise parabolic method. The second-order profile of a tracer is reconstructed under two constraints: (i) the area integral of the profile is equal to the cell-averaged value times the cell area and (ii) the profile is the least squares fit to the cell-vertex values. The new scheme [the second upwind-biased quadratic approximation (UQA-2)] is more accurate than the preceding second-order reconstruction scheme [the first upwind-biased quadratic approximation (UQA-1)] in most of the tests in this work. Solutions of UQA-2 are sharper than those of UQA-1, although with slightly larger phase errors. The computational cost of UQA-2 is comparable to UQA-1.
document
http://n2t.net/ark:/85065/d7cz380n
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2013-02-01T00:00:00Z
Copyright 2013 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:49:30.412454