Identification

Title

Evaluating a lightning parameterization based on cloud-top height for mesoscale numerical model simulations

Abstract

The Price and Rind lightning parameterization based on cloud-top height is a commonly used method for predicting flash rate in global chemistry models. As mesoscale simulations begin to implement flash rate predictions at resolutions that partially resolve convection, it is necessary to validate and understand the behavior of this method within such a regime. In this study, we tested the flash rate parameterization, intra-cloud/cloud-to-ground (IC:CG) partitioning parameterization, and the associated resolution dependency "calibration factor" by Price and Rind using the Weather Research and Forecasting (WRF) model running at 36 km, 12 km, and 4 km grid spacings within the continental United States. Our results show that while the integrated flash count is consistent with observations when model biases in convection are taken into account, an erroneous frequency distribution is simulated. When the spectral characteristics of lightning flash rate are a concern, we recommend the use of prescribed IC:CG values. In addition, using cloud-top from convective parameterization, the "calibration factor" is also shown to be insufficient in reconciling the resolution dependency at the tested grid spacing used in this study. We recommend scaling by areal ratio relative to a base-case grid spacing determined by convective core density.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7474bqv

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2013-04-03T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright Author(s) 2013. This work is distributed under the Creative Commons Attribution 3.0 License

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:10:40.639305

Metadata language

eng; USA