Identification

Title

Toward carbon neutrality: Projecting a desert-based photovoltaic power network circumnavigating the globe

Abstract

Carbon, the human's most reliable fuel type in the past, must be neutralized in this century toward the Paris Agreement temperature goals. Solar power is widely believed a key fossil fuel substitute but suffers from the needs of large space occupation and huge energy storage for peak shaving. Here, we propose a solar network circumnavigating the globe to connecting large-scale desert photovoltaics among continents. By evaluating the generation potential of desert photovoltaic plants on each continent (taking dust accumulation into account) and the hourly maximum transmission potential that each inhabited continent can receive (taking transmission loss into account), we find that the current total annual human demand for electricity will be more than met by this solar network. The local imbalanced diurnal generation of photovoltaic energy can be made up by transcontinental power transmission from other power stations in the network to meet the hourly electricity demand. We also find that laying solar panels over a large space may darken the Earth's surface, but this albedo warming effect is orders of magnitude lower than that of CO2 released from thermal power plants. From practical needs and ecological effects, this powerful and stable power network with lower climate perturbability could potentially help to phase out global carbon emissions in the 21st century.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7sq94fd

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-03-22T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:53:26.103495

Metadata language

eng; USA