Identification

Title

Theoretical estimates of light transmittance at the MOSAiC Central Observatory

Abstract

Light transmission through a sea ice cover has strong implications for the heat content of the upper ocean, the magnitude of bottom and lateral ice melt, and primary productivity in the ocean. Light transmittance in the vicinity of the Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC) Central Observatory was estimated by driving a two-stream radiative transfer model with physical property observations. Data include point and transect observations of snow depth, surface scattering layer thickness, ice thickness, and pond depth. The temporal evolution of light transmittance at specific sites and the spatial variability along transect lines were computed. Ponds transmitted 4–6 times as much solar energy per unit area as bare ice. On July 25, ponds covered about 18% of the area and contributed roughly 50% of the sunlight transmitted through the ice cover. Approximating the transmittance along a transect line using average values for the physical properties will always result in lower light transmittance than finding the average light transmittance using the full distribution of points. Transmitted solar energy calculated using the standard five ice thickness categories and three surface types used in the Los Alamos sea ice model CICE, the sea ice component of many weather and climate models, was only about 1 W m−2 less than using all the points along the transect. This minor difference suggests that the important processes and resulting feedbacks relating to solar transmittance can be represented in models that use five or more categories of ice thickness distributions.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7h70m87

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2025-07-22T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;font-weight:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-12-24T17:44:34.240934

Metadata language

eng; USA