Impact of changes in the Sun's conveyor-belt on recent solar cycles
Plasma flowing poleward at the solar surface and returning equatorward near the base of the convection zone, called the meridional circulation, constitutes the Sun's conveyor-belt. Just as the Earth's great oceanic conveyor-belt carries thermal signatures that determine El Nino events, the Sun's conveyor-belt determines timing, amplitude and shape of a solar cycle in flux-transport type dynamos. In cycle 23, the Sun's surface poleward meridional flow extended all the way to the pole, while in cycle 22 it switched to equatorward near 60°. Simulations from a flux-transport dynamo model including these observed differences in meridional circulation show that the transport of dynamo-generated magnetic flux via the longer conveyor-belt, with slower return-flow in cycle 23 compared to that in cycle 22, may have caused the longer duration of cycle 23.
document
http://n2t.net/ark:/85065/d7s75gsp
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2010-07-30T00:00:00Z
An edited version of this paper was published by AGU. Copyright 2010 American Geophysical Union.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:44:37.163910