Identification

Title

PBL state estimation with surface observations, a column model, and an ensemble Kalman filter

Abstract

Following recent results showing the potential for using surface observations of temperature, water vapor mixing ratio, and winds to determine PBL profiles, this paper reports on experiments with real observations. A 1D column model with soil, surface-layer, and PBL parameterization schemes that are the same as in the Weather Research and Forecasting model is used to estimate PBL profiles with an ensemble filter. Surface observations over the southern Great Plains are assimilated during the spring and early summer period of 2003. To strictly quantify the utility of the observations for determining PBL profiles in the ensemble filter framework, only climatological information is provided for initialization and forcing. The analysis skill, measured against rawinsondes for an independent verification, is compared against climatology to quantify the influence of the observations. Sensitivity to changing parameterization schemes, and to prescribed values of observation error variance, is examined. Temporal propagation of skillful analyses is also assessed, separating the effects of good prior state estimates from the impact of assimilation at night when covariance is weak. Results show that accurate profiles of temperature, mixing ratio, and winds are estimated with the column model and ensemble filter assimilating only surface observations. Results are largely insensitive to choice of parameterization scheme and specified observation error variance. The effects of using different parameterization schemes within the column model depend on whether assimilation is included, showing the importance of evaluating models within assimilation systems. At night, skillful estimates are possible because the influence of the observations from the previous day is temporally propagated, and atmospheric dynamics in the residual layer operate on slow time scales. It is expected that these profiles will have applications for nowcasting and secondary models (e.g., plume dispersion models) that rely on accurate specification of PBL structure.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7wq041j

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2007-08-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2007 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T17:00:54.917108

Metadata language

eng; USA