Identification

Title

Changes of thermospheric composition and ionospheric density caused by quasi 2-day wave dissipation

Abstract

Using the thermosphere-ionosphere-mesosphere electrodynamics-general circulation model, we investigate the effect of quasi 2 day wave (QTDW) dissipation on thermospheric composition (O/N₂) and ionospheric electron density during solar minimum. The overall thermospheric and ionospheric changes induced by the QTDW are evaluated by running the model with and without QTDW forcing imposed at the model lower boundary. The dissipation of the westward propagating QTDW in the lower thermosphere causes westward mean wind acceleration and drives a poleward meridional circulation. The circulation induced by the QTDW, as determined by the difference between the mean wind patterns of a run with the QTDW and a base run without the QTDW, enhances the mixing of constituents in the lower thermosphere. Through molecular diffusion, the decrease of the O mixing ratio and the increase of the N₂ and O₂ mixing ratios propagate from the lower thermosphere into the upper thermosphere. As a result, the O/N₂ ratio near the ionospheric F₂ peak is reduced by about 16-20% at low and midlatitudes. This in turn produces an approximately 16-32% depletion in the F₂ peak electron density at low and midlatitudes. The simulated decrease of electron density during a QTDW event is in quantitative agreement with published observations. This work suggests a new major pathway for the traveling planetary wave from the lower atmosphere to affect the thermosphere and ionosphere via dissipation and mean wind acceleration.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7cz3830

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2014-03-24T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2014 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-12T00:09:43.702883

Metadata language

eng; USA