Identification

Title

High-resolution gridded daily rainfall and temperature for the Hawaiian Islands (1990–2014)

Abstract

Spatially continuous data products are essential for a number of applications including climate and hydrologic modeling, weather prediction, and water resource management. In this work, a distance-weighted interpolation method used to map daily rainfall and temperature in Hawaii is described and assessed. New high-resolution (250 m) maps were developed for daily rainfall and daily maximum (T-max) and minimum (T-min) near-surface air temperature for the period 1990-2014. Maps were produced using climatologically aided interpolation, in which station anomalies were interpolated using an optimized inverse distance weighting approach and then combined with long-term means to produce daily gridded estimates. Leave-one-out cross validation was performed to assess the quality of the final daily grids. The median absolute prediction error for rainfall was 0.1 mm with an average overprediction (+0.6 mm) on days when total rainfall was less than 1 mm. On days with total rainfall greater than 1 mm, median absolute prediction errors were 2 mm and rainfall was typically underpredicted above the 10-mm threshold. For daily temperature, median absolute prediction errors were 3.1 degrees and 2.8 degrees C for T-max and T-min, respectively. On average, this method overpredicted T-max (+1.1 degrees C) and T-min (+1.5 degrees C), and errors varied considerably among stations. Errors for all variables exhibited significant seasonal variations. However, the annual range of errors was small. The methods presented here provide an effective approach for mapping daily weather fields in a topographically diverse region and improve on previous products in their spatial resolution, time period of coverage, and use of data.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d75b05jc

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-03-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 American Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:30:34.398201

Metadata language

eng; USA