Identification

Title

Why are there more summer afternoon low clouds over the Tibetan Plateau compared to Eastern China?

Abstract

In this study, we analyze the relationships between summer afternoon low cloud cover and environmental conditions over the Tibetan Plateau (TP). Using in situ measurements, satellite data, and reanalysis, and based on theoretical analysis, we find that there is stronger thermal turbulence, lower temperature, and higher frequency of low cloud formation for the same surface relative humidity over the eastern and central TP compared with eastern China. With the same sensible heat flux, decreased air density enhances buoyancy flux, which increases the planetary boundary layer height and moisture vertical transport. At the same time, with the same near-surface relative humidity, lower temperature over the TP decreases the lifting condensation level, which increases the probability of the air parcel reaching this level. Compared to the low-elevation region in eastern China, these two mechanisms enhance low cloud occurrence in the afternoon over the TP.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7h70k5g

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-12-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:11:44.079439

Metadata language

eng; USA