Evolution of moisture transport to the western U.S. during the last deglaciation
We investigate climate dynamics and teleconnections governing moisture transport to the western U.S. during past warm and cool intervals of the last deglaciation using paleoclimate simulations of the Bølling warm (~14 ka) and Younger Dryas cool (~12 ka) events. Results suggest that the waning continental ice sheet weakened atmospheric pressure centers in the region leading to a progression from a more sinuous to more zonal Pacific winter storm track throughout the deglaciation. Furthermore, variations in meltwater flux to the Atlantic influenced the meridional temperature gradient over the Pacific and thereby modulated storm track intensity. Changing sinuosity of the storm track may be reflected in broad increases in modeled δ¹⁸Oprecip and observed δ¹⁸Ospeleothem values from the western U.S. over the last deglaciation, whereas abrupt δ¹⁸Ospeleothem shifts are dynamically consistent with the response of storm track intensity to variations in meltwater flux to the Atlantic.
document
https://n2t.org/ark:/85065/d7f76f5g
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2016-04-16T00:00:00Z
Copyright 2016 American Geophysical Union.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-11T20:49:23.417166