Identification

Title

Product distribution, kinetics, and aerosol formation from the OH oxidation of dimethyl sulfide under different RO 2 regimes

Abstract

The atmospheric oxidation of dimethyl sulfide (DMS) represents a major natural source of atmospheric sulfate aerosols. However, there remain large uncertainties in our understanding of the underlying chemistry that governs the product distribution and sulfate yield from DMS oxidation. Here, chamber experiments were conducted to simulate gas-phase OH-initiated oxidation of DMS under a range of reaction conditions. Most importantly, the bimolecular lifetime (tau(bi)) of the peroxy radical CH3SCH2OO was varied over several orders of magnitude, enabling the examination of the role of peroxy radical isomerization reactions on product formation. An array of analytical instruments was used to measure nearly all sulfur-containing species in the reaction mixture, and results were compared with a near-explicit chemical mechanism. When relative humidity was low, "sulfur closure " was achieved under both high-NO (tau(bi)< 0.1 s) and low-NO (tau(bi)> 10 s) conditions, though product distributions were substantially different in the two cases. Under high-NO conditions, approximately half the product sulfur was in the particle phase, as methane sulfonic acid (MSA) and sulfate, with most of the remainder as SO2 (which in the atmosphere would eventually oxidize to sulfate or be lost to deposition). Under low-NO conditions, hydroperoxymethyl thioformate (HPMTF, HOOCH2SCHO), formed from CH3SCH2OO isomerization, dominates the sulfur budget over the course of the experiment, suppressing or delaying the formation of SO2 and particulate matter. The isomerization rate constant of CH3SCH2OO at 295 K is found to be 0.13 +/- 0.03 s(-1), in broad agreement with other recent laboratory measurements. The rate constants for the OH oxidation of key first-generation oxidation products (HPMTF and methyl thioformate, MTF) were also determined (k(OH+HPMTF)=2.1x10(-11) cm(3) molec.(-1) s(-1), k(OH+MTF)=1.35x10(-11) cm(3) molec.(-1) s(-1)). Product measurements agree reasonably well with mechanistic predictions in terms of total sulfur distribution and concentrations of most individual species, though the mechanism overpredicts sulfate and underpredicts MSA under high-NO conditions. Lastly, results from high-relative-humidity conditions suggest efficient heterogenous loss of at least some gas-phase products.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7g73jk8

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-12-20T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:19:07.787073

Metadata language

eng; USA