Assessment of scintillation data from PlanetiQ and Spire Global radio occultation missions
This study presents an assessment of scintillation observations obtained from PlanetiQ and Spire Global commercial CubeSat constellation radio occultation (RO) missions. A conservative algorithm is developed to detect and distinguish ionospheric scintillation from other scintillation‐like features in the RO measurements. Identified ionospheric scintillation events are compared with observations from independent instruments including ground‐based Global Navigation Satellite System scintillation monitors and the Constellation Observing System for Meteorology, Ionosphere, and Climate‐2 RO mission. The identified scintillation events from 6 months of data are further analyzed statistically in terms of geographic areas where scintillations are detected, scintillation indices magnitude distributions, and duration distributions of scintillation events. The results demonstrate that the observations are consistent with the general morphology of ionospheric scintillation. Additionally, the geographic distributions of ionospheric scintillation and of other detected anomalies validate the effectiveness of the proposed flagging algorithm in classifying ionospheric scintillation events and anomalies. The assessment in this study contributes to confidence in the performance of scintillation data from low‐cost commercial RO missions and highlights the areas of improvement for future missions.
document
https://n2t.net/ark:/85065/d7fb57bw
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2025-03-01T00:00:00Z
<span style="font-family:Arial;font-size:10pt;font-style:normal;font-weight:normal;" data-sheets-root="1">Copyright 2025 American Geophysical Union (AGU).</span>
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-10T19:54:03.216810