Identification

Title

The rain is askew: Two idealized models relating vertical velocity and precipitation distributions in a warming world

Abstract

As the planet warms, climate models predict that rain will become heavier but less frequent and that the circulation will weaken. Here, two heuristic models relating moisture, vertical velocity, and rainfall distributions are developed one in which the distribution of vertical velocity is prescribed and another in which it is predicted. These models are used to explore the response to warming and moistening as well as changes in circulation, atmospheric energy budget, and stability. Some key assumptions of the models include that relative humidity is fixed within and between climate states and that stability is constant within each climate state. The first model shows that an increase in skewness of the vertical velocity distribution is crucial for capturing salient characteristics of the changing distribution of rain, including the muted rate of mean precipitation increase relative to extremes and the decrease in the total number or area of rain events. The second model suggests that this increase in the skewness of the vertical velocity arises from the asymmetric impact of latent heating on vertical motion.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7qr4zt3

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2016-09-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T20:31:45.561316

Metadata language

eng; USA