Identification

Title

Exploring inland tropical cyclone rainfall and tornadoes under future climate conditions through a case study of Hurricane Ivan

Abstract

The overarching purpose of this study is to investigate the impacts of anthropogenic climate change both on the rainfall and tornadoes associated with tropical cyclones (TCs) making landfall in the U.S. Atlantic basin. The "pseudo-global warming" (PGW) approach is applied to Hurricane Ivan (2004), a historically prolific tropical cyclone tornado (TCT)-producing storm. Hurricane Ivan is simulated under its current climate forcings using the Weather Research and Forecasting Model. This control simulation (CTRL) is then compared with PGW simulations in which the current forcings are modified by climate-change differences obtained from the Community Climate System Model, version 4 (NCAR); Model for Interdisciplinary Research on Climate, version 5 (MIROC); and Geophysical Fluid Dynamics Laboratory Climate Model, version 3 (GFDL). Changes in TC intensity, TC rainfall, and TCT production, identified for the PGW-modified Ivan, are documented and analyzed. Relative to CTRL, all three PGW simulations show an increase in TC intensity and generate substantially more accumulated rainfall over the course of Ivan's progression over land. However, only one of the TCs under PGW (MIROC) produced more TCTs than CTRL. Evidence is provided that, in addition to favorable environmental conditions, TCT production is related to the TC track length and to the strength of the interaction between the TC and an environmental midlevel trough. Enhanced TCT generation at landfall for MIROC and GFDL is attributed to increased values of convective available potential energy, low-level shear, and storm-relative environmental helicity.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7dr2zxw

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2021 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:30:18.787101

Metadata language

eng; USA