Identification

Title

Modeling NH4NO3 over the San Joaquin Valley during the 2013 DISCOVER‐AQ campaign

Abstract

The San Joaquin Valley (SJV) of California experiences high concentrations of particulate matter NH4NO3 during episodes of meteorological stagnation in winter. A rich data set of observations related to NH4NO3 formation was acquired during multiple periods of elevated NH4NO3 during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign in SJV in January and February 2013. Here NH4NO3 is simulated during the SJV DISCOVER-AQ study period with the Community Multiscale Air Quality (CMAQ) model, diagnostic model evaluation is performed using the DISCOVER-AQ data set, and integrated reaction rate analysis is used to quantify HNO3 production rates. Simulated NO3- generally agrees well with routine monitoring of 24-hr average NO3-, but comparisons with hourly average NO3- measurements in Fresno revealed differences at higher time resolution. Predictions of gas-particle partitioning of total nitrate (HNO3+NO3-) and NHx (NH3+NH4+) generally agree well with measurements in Fresno, although partitioning of total nitrate to HNO3 is sometimes overestimated at low relative humidity in afternoon. Gas-particle partitioning results indicate that NH4NO3 formation is limited by HNO3 availability in both the model and ambient. NH3 mixing ratios are underestimated, particularly in areas with large agricultural activity, and additional work on the spatial allocation of NH3 emissions is warranted. During a period of elevated NH4NO3, the model predicted that the OH+NO2 pathway contributed 46% to total HNO3 production in SJV and the N2O5 heterogeneous hydrolysis pathway contributed 54%. The relative importance of the OH+NO2 pathway for HNO3 production is predicted to increase as NOx emissions decrease.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d72z1894

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-05-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:15:07.608827

Metadata language

eng; USA