Identification

Title

On the correspondence between seasonal forecast biases and long-term climate biases in sea surface temperature

Abstract

The correspondence between mean sea surface temperature (SST) biases in retrospective seasonal forecasts (hindcasts) and long-term climate simulations from five global climate models is examined to diagnose the degree to which systematic SST biases develop on seasonal time scales. The hindcasts are from the North American Multimodel Ensemble, and the climate simulations are from the Coupled Model Intercomparison Project. The analysis suggests that most robust climatological SST biases begin to form within 6 months of a realistically initialized integration, although the growth rate varies with location, time, and model. In regions with large biases, interannual variability and ensemble spread is much smaller than the climatological bias. Additional ensemble hindcasts of the Community Earth System Model with a different initialization method suggest that initial conditions do matter for the initial bias growth, but the overall global bias patterns are similar after 6 months. A hindcast approach is more suitable to study biases over the tropics and subtropics than over the extratropics because of smaller initial biases and faster bias growth. The rapid emergence of SST biases makes it likely that fast processes with time scales shorter than the seasonal time scales in the atmosphere and upper ocean are responsible for a substantial part of the climatological SST biases. Studying the growth of biases may provide important clues to the causes and ultimately the amelioration of these biases. Further, initialized seasonal hindcasts can profitably be used in the development of high-resolution coupled ocean-atmosphere models.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d72b92dt

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:30:12.407086

Metadata language

eng; USA