Deep-learning-based precipitation observation quality control
We present a novel approach for the automated quality control (QC) of precipitation for a sparse station observation network within the complex terrain of British Columbia, Canada. Our QC approach uses convolutional neural networks (CNNs) to classify bad observation values, incorporating a multiclassifier ensemble to achieve better QC performance. We train CNNs using human QC'd labels from 2016 to 2017 with gridded precipitation and elevation analyses as inputs. Based on the classification evaluation metrics, our QC approach shows reliable and robust performance across different geographical environments (e.g., coastal and inland mountains), with 0.927 area under curve (AUC) and type I/type II error lower than 15%. Based on the saliency-map-based interpretation studies, we explain the success of CNN-based QC by showing that it can capture the precipitation patterns around, and upstream of the station locations. This automated QC approach is an option for eliminating bad observations for various applications, including the preprocessing of training datasets for machine learning. It can be used in conjunction with human QC to improve upon what could be accomplished with either method alone.
document
http://n2t.net/ark:/85065/d7g44tqq
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2021-05-01T00:00:00Z
Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:30:22.998264