Identification

Title

Hybrid mass coordinate in WRF-ARW and its impact on upper-level turbulence forecasting

Abstract

Although a terrain-following vertical coordinate is well suited for the application of surface boundary conditions, it is well known that the influences of the terrain on the coordinate surfaces can contribute to increase numerical errors, particularly over steep topography. To reduce these errors, a hybrid sigma-pressure coordinate is formulated in the Weather Research and Forecasting (WRF) Model, and its effects are illustrated for both an idealized test case and a real-data forecast for upper-level turbulence. The idealized test case confirms that with the basic sigma coordinate, significant upper-level disturbances can be produced due to numerical errors that arise as the advection of strong horizontal flow is computed along coordinate surfaces that are perturbed by smaller-scale terrain influences. With the hybrid coordinate, this artificial noise is largely eliminated as the mid- and upper-level coordinate surfaces correspond much more closely to constant pressure surfaces. In real-data simulations for upper-level turbulence forecasting, the WRF Model using the basic sigma coordinate tends to overpredict the strength of upper-air turbulence over mountainous regions because of numerical errors arising as a strong upper-level jet is advected along irregular coordinate surfaces. With the hybrid coordinate, these errors are reduced, resulting in an improved forecast of upper-level turbulence. Analysis of kinetic energy spectra for these simulations confirms that artificial amplitudes in the smaller scales at upper levels that arise with the basic sigma coordinate are effectively removed when the hybrid coordinate is used.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7nk3j13

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-03-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 Author(s). This work is licensed under a Creative Commons Attribution 4.0 International license.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:18:07.236359

Metadata language

eng; USA