Identification

Title

Deterministic wind speed predictions with analog-based methods over complex topography

Abstract

The performance of analog-based and Kalman filter (KF) postprocessing methods is tested in climatologically and topographically different regions for point-based wind speed predictions at 10 m above the ground. The results are generated using several configurations of the mesoscale numerical weather prediction model ALADIN. This study shows that deterministic analog-based predictions (ABPs) improve the correlation between predictions and measurements while reducing the forecast error, with respect to both the starting model predictions and the KF-based correction. While the KF generally outperforms the ABPs in bias reduction, the combination of the KF and analog approach can be similarly successful. In the coastal complex area, characterized with a larger frequency of strong wind, the ABPs are more successful in reducing the dispersion error than the KF. The application of the KF algorithm to the analogs in the so-called analog space (KFAS) is the least prone to standard deviation underestimation among the ABPs. All ABPs improve the prediction of larger-than-diurnal motions, and KFAS is superior among all ABPs in predicting alternating wind regimes on time scales shorter than a day. The ABPs better distinguish different wind speed categories in the coastal complex terrain by using a higher-resolution model input. Differences among starting model and postprocessed forecasts in other types of terrain are less pronounced.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7pr7zvc

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-09-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 American Meteorological Society

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:35:30.347590

Metadata language

eng; USA